Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
IUBMB Life ; 74(6): 532-542, 2022 06.
Article in English | MEDLINE | ID: covidwho-1813517

ABSTRACT

Coronavirus disease 2019, a newly emerging serious infectious disease, has spread worldwide. To date, effective drugs against the disease are limited. Traditional Chinese medicine was commonly used in treating COVID-19 patients in China. Here we tried to identify herbal effective lipid compounds from the lipid library of 92 heat-clearing and detoxication Chinese herbs. Through virtual screening, enzymatic activity and inhibition assays, and surface plasmon resonance tests, we identified lipid compounds targeting the main protease (Mpro ) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and verified their functions. Here, we found that natural lipid compounds LPC (14:0/0:0) and LPC (16:0/0:0) could target SARS-CoV-2 Mpro , recover cell death induced by SARS-CoV-2, and ameliorate acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) induced by bacterial lipopolysaccharides and virus poly (I:C) mimics in vivo and in vitro. Our results suggest that LPC (14:0/0:0) and LPC (16:0/0:0) might be potential pan remedy against ARDS.


Subject(s)
Acute Lung Injury , COVID-19 Drug Treatment , Respiratory Distress Syndrome , Acute Lung Injury/drug therapy , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Lipids , Mice , Molecular Docking Simulation , SARS-CoV-2
2.
J Pharm Biomed Anal ; 195: 113876, 2021 Feb 20.
Article in English | MEDLINE | ID: covidwho-1001609

ABSTRACT

In this study, we developed a sensitive and efficient analytical approach combining a 96-well plate-based protein precipitation strategy with ultra-performance liquid chromatography electrospray ionization tandem mass spectrometry (UPLC-MS/MS) in order to assess the pharmacokinetic (PK) properties of sivelestat and its metabolite XW-IMP-A in samples of plasma from ALI/ARDS patients with SIRS. The samples were separated via gradient elution with a C18 column (Phenomenex Kinetex, C18, 2.6 µm, 100 Å, 50 × 2.1 mm) using 0.1 % formic acid aqueous solution (A) and acetonitrile-methanol (1:1, V:V) (B) as a mobile phase at a 0.6 mL/min flow rate. UPLC-MS/MS spectra were generated in positive ion mode, and multiple reaction monitoring (MRM) was used to detect the following transitions: m/z 435.1 → 360.0 for sivelestat, m/z 469.0 → 394.0 for sivelestat-IS, m/z 351.0 → 276.0 for XW-IMP-A, and m/z 384.9 → 310.0 for XW-IMP-A-IS. This assay was run for 2.5 min in total, and achieved lowest limit of quantitation values of 2.0 ng/mL and 0.5 ng/mL for sivelestat and XW-IMP-A, respectively, while remaining highly linear from 2-500 ng/mL for sivelestat (r2 ≥ 0.9900) and from 0.5-125 ng/mL for XW-IMP-A (r2 ≥ 0.9900). These validated data were consistent with US Food and Drug Administration (FDA) and European Medicines Agency (EMA) acceptance criteria. In addition, this method was successfully applied to the steady-state PK evaluation of ALI/ARDS patients with SIRS.


Subject(s)
Respiratory Distress Syndrome , Tandem Mass Spectrometry , China , Chromatography, High Pressure Liquid , Chromatography, Liquid , Glycine/analogs & derivatives , Humans , Limit of Detection , Reproducibility of Results , Sulfonamides , Systemic Inflammatory Response Syndrome
3.
Infect Genet Evol ; 88: 104682, 2021 03.
Article in English | MEDLINE | ID: covidwho-1065473

ABSTRACT

BACKGROUND: The reported association between an insertion/deletion (I/D) polymorphism in the angiotensin-converting enzyme (ACE) gene and the risk for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) remains controversial despite the publication of four meta-analyses on this topic. Here, we updated the meta-analysis with more studies and additional assessments that include adults and children within the context of the coronavirus disease 2019 (COVID-19) pandemic. METHODS: Sixteen articles (22 studies) were included. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using three genetic models (allele, recessive and dominant), in which ARDS patients were compared with non-ARDS patients (A1) and healthy controls (A2). Mortality outcomes were also assessed (A3). The influence of covariates was examined by meta-regression. Bonferroni correction was performed for multiple pooled associations. Subgroup analyses based on ethnicity (Asians, Caucasians) and life stage (adults, children) were conducted. Heterogeneity was addressed with outlier treatment. RESULTS: This meta-analysis generated 68 comparisons, 21 of which were significant. Of the 21, four A1 and three A3 highly significant (Pa = 0.00001-0.0008) outcomes withstood Bonferroni correction. For A1, allele and recessive associations were found in overall (OR 0.49, 95% CI 0.39-0.61), Caucasians (OR 0.46, 95% CI 0.35-0.61) and children (ORs 0.49-0.66, 95% CI 0.33-0.84) analyses. For A3, associations were found in overall (dominant: OR 0.45, 95% CI 0.29-0.68) and Asian subgroup (allele/ dominant: ORs 0.31-0.39, 95% CIs 0.18-0.63) analyses. These outcomes were either robust, or statistically powered or both and uninfluenced by covariates. CONCLUSIONS: Significant associations of the ACE I/D polymorphism with the risk of ALI/ARDS were indicated in Caucasians and children as well as in Asians in mortality analysis. These findings were underpinned by high significance, high statistical power and robustness. ACE genotypes may be useful for ALI/ARDS therapy for patients with COVID-19.


Subject(s)
Acute Lung Injury/genetics , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Genetic Predisposition to Disease , INDEL Mutation , Respiratory Distress Syndrome/genetics , Acute Lung Injury/ethnology , Acute Lung Injury/pathology , Acute Lung Injury/virology , Adult , Age Factors , Alleles , Asian People , COVID-19/ethnology , COVID-19/pathology , COVID-19/virology , Case-Control Studies , Child , Gene Frequency , Humans , Respiratory Distress Syndrome/ethnology , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , SARS-CoV-2/pathogenicity , Survival Analysis , White People
4.
Front Bioeng Biotechnol ; 8: 557652, 2020.
Article in English | MEDLINE | ID: covidwho-940188

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative pathogen for coronavirus disease-2019 (COVID-19), which has posed an increasing serious public health threat. However, still there are no approved antiviral agents or vaccines available yet. Mesenchymal stem cells (MSCs) are emerging as a novel promising adjuvant therapy for the attenuation of COVID-19 based on its putative pathogenesis. MSCs may exert anti-inflammatory, immunomodulatory, anti-apoptotic, as well as regenerative effects through a series of mechanisms. Remarkably, MSCs may be resistant to virus infection, which is fundamental for the treatment of COVID-19. The beneficial therapeutic effects of MSCs have been preliminarily proved to be safe and efficacious for the treatment of COVID-19 in current clinical trials. This work aims to review the beneficial effects of MSCs in treating ALI/ARDS, which provides novel insight into the potential therapeutic strategies against COVID-19. However, further research is warranted regarding both safety and efficacy of MSCs.

SELECTION OF CITATIONS
SEARCH DETAIL